3.461 \(\int \frac {1}{x^4 \sqrt {1-x^3}} \, dx\)

Optimal. Leaf size=35 \[ -\frac {\sqrt {1-x^3}}{3 x^3}-\frac {1}{3} \tanh ^{-1}\left (\sqrt {1-x^3}\right ) \]

[Out]

-1/3*arctanh((-x^3+1)^(1/2))-1/3*(-x^3+1)^(1/2)/x^3

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {266, 51, 63, 206} \[ -\frac {\sqrt {1-x^3}}{3 x^3}-\frac {1}{3} \tanh ^{-1}\left (\sqrt {1-x^3}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*Sqrt[1 - x^3]),x]

[Out]

-Sqrt[1 - x^3]/(3*x^3) - ArcTanh[Sqrt[1 - x^3]]/3

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x^4 \sqrt {1-x^3}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x} x^2} \, dx,x,x^3\right )\\ &=-\frac {\sqrt {1-x^3}}{3 x^3}+\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x} x} \, dx,x,x^3\right )\\ &=-\frac {\sqrt {1-x^3}}{3 x^3}-\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sqrt {1-x^3}\right )\\ &=-\frac {\sqrt {1-x^3}}{3 x^3}-\frac {1}{3} \tanh ^{-1}\left (\sqrt {1-x^3}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 35, normalized size = 1.00 \[ -\frac {\sqrt {1-x^3}}{3 x^3}-\frac {1}{3} \tanh ^{-1}\left (\sqrt {1-x^3}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*Sqrt[1 - x^3]),x]

[Out]

-1/3*Sqrt[1 - x^3]/x^3 - ArcTanh[Sqrt[1 - x^3]]/3

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 50, normalized size = 1.43 \[ -\frac {x^{3} \log \left (\sqrt {-x^{3} + 1} + 1\right ) - x^{3} \log \left (\sqrt {-x^{3} + 1} - 1\right ) + 2 \, \sqrt {-x^{3} + 1}}{6 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

-1/6*(x^3*log(sqrt(-x^3 + 1) + 1) - x^3*log(sqrt(-x^3 + 1) - 1) + 2*sqrt(-x^3 + 1))/x^3

________________________________________________________________________________________

giac [A]  time = 0.16, size = 44, normalized size = 1.26 \[ -\frac {\sqrt {-x^{3} + 1}}{3 \, x^{3}} - \frac {1}{6} \, \log \left (\sqrt {-x^{3} + 1} + 1\right ) + \frac {1}{6} \, \log \left ({\left | \sqrt {-x^{3} + 1} - 1 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

-1/3*sqrt(-x^3 + 1)/x^3 - 1/6*log(sqrt(-x^3 + 1) + 1) + 1/6*log(abs(sqrt(-x^3 + 1) - 1))

________________________________________________________________________________________

maple [A]  time = 0.03, size = 28, normalized size = 0.80 \[ -\frac {\arctanh \left (\sqrt {-x^{3}+1}\right )}{3}-\frac {\sqrt {-x^{3}+1}}{3 x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(-x^3+1)^(1/2),x)

[Out]

-1/3*arctanh((-x^3+1)^(1/2))-1/3*(-x^3+1)^(1/2)/x^3

________________________________________________________________________________________

maxima [A]  time = 1.34, size = 43, normalized size = 1.23 \[ -\frac {\sqrt {-x^{3} + 1}}{3 \, x^{3}} - \frac {1}{6} \, \log \left (\sqrt {-x^{3} + 1} + 1\right ) + \frac {1}{6} \, \log \left (\sqrt {-x^{3} + 1} - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

-1/3*sqrt(-x^3 + 1)/x^3 - 1/6*log(sqrt(-x^3 + 1) + 1) + 1/6*log(sqrt(-x^3 + 1) - 1)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 195, normalized size = 5.57 \[ -\frac {\sqrt {1-x^3}}{3\,x^3}-\frac {\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(1 - x^3)^(1/2)),x)

[Out]

- (1 - x^3)^(1/2)/(3*x^3) - (((3^(1/2)*1i)/2 + 3/2)*(x^3 - 1)^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)
/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(
1/2)*ellipticPi((3^(1/2)*1i)/2 + 3/2, asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/(
(3^(1/2)*1i)/2 - 3/2)))/((1 - x^3)^(1/2)*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 -
 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2))

________________________________________________________________________________________

sympy [A]  time = 3.79, size = 82, normalized size = 2.34 \[ \begin {cases} - \frac {\operatorname {acosh}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} - \frac {\sqrt {-1 + \frac {1}{x^{3}}}}{3 x^{\frac {3}{2}}} & \text {for}\: \frac {1}{\left |{x^{3}}\right |} > 1 \\\frac {i \operatorname {asin}{\left (\frac {1}{x^{\frac {3}{2}}} \right )}}{3} - \frac {i}{3 x^{\frac {3}{2}} \sqrt {1 - \frac {1}{x^{3}}}} + \frac {i}{3 x^{\frac {9}{2}} \sqrt {1 - \frac {1}{x^{3}}}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(-x**3+1)**(1/2),x)

[Out]

Piecewise((-acosh(x**(-3/2))/3 - sqrt(-1 + x**(-3))/(3*x**(3/2)), 1/Abs(x**3) > 1), (I*asin(x**(-3/2))/3 - I/(
3*x**(3/2)*sqrt(1 - 1/x**3)) + I/(3*x**(9/2)*sqrt(1 - 1/x**3)), True))

________________________________________________________________________________________